MARK SCHEME for the May/June 2011 question paper for the guidance of teachers

9701 CHEMISTRY

9701/21
Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2011	9701	21

1 (a) alkanes/paraffins not hydrocarbon
(b) $2 \mathrm{C}_{14} \mathrm{H}_{30}+\mathbf{4 3} \mathrm{O}_{2} \rightarrow \mathbf{2 8} \mathrm{CO}_{2}+\mathbf{3 0} \mathrm{H}_{2} \mathrm{O}$ or
$\mathrm{C}_{14} \mathrm{H}_{30}+{ }^{43} /_{2} \mathrm{O}_{2} \rightarrow 14 \mathrm{CO}_{2}+15 \mathrm{H}_{2} \mathrm{O}$
(c) (i) mass of $\mathrm{C}_{14} \mathrm{H}_{30}$ burnt

$$
\begin{equation*}
\frac{8195 \times 10.8}{1000}=88.506=88.5 t \tag{1}
\end{equation*}
$$

(ii) mass of CO_{2} produced
M_{r} of $\mathrm{C}_{14} \mathrm{H}_{30}=(14 \times 12+30 \times 1)=198$
$2 \times 198 \mathrm{t}$ of $\mathrm{C}_{14} \mathrm{H}_{30} \rightarrow 28 \times 44 \mathrm{t}$ of CO_{2}
$88.5 t$ of $\mathrm{C}_{14} \mathrm{H}_{30} \rightarrow \frac{28 \times 44 \times 88.5}{2 \times 198}$
$=275.3 \mathrm{t}$ of CO_{2}
allow 275.4 t if candidate has used 88.506
allow ecf on wrong value for M_{r} of $\mathrm{C}_{14} \mathrm{H}_{30}$
(d) $n=\frac{P V}{R T}=\frac{6 \times 10^{5} \times 710 \times 10^{-6}}{8.31 \times 293}$

$$
\begin{equation*}
=0.175 \tag{1}
\end{equation*}
$$

(e) $P=\frac{n R T}{V}=\frac{0.175 \times 8.31 \times 278}{710 \times 10^{-6}}$

$$
\begin{equation*}
=569410.5634 \mathrm{~Pa}=5.7 \times 10^{5} \tag{1}
\end{equation*}
$$

allow ecf on (d)

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2011	9701	21

2 (a) (i) break large hydrocarbons into smaller hydrocarbons or break down large hydrocarbons
smaller hydrocarbons are more useful or smaller hydrocarbons are more in demand
(ii) using high temperatures/thermal cracking or using catalysts/catalytic cracking
(iii) $\mathrm{C}_{14} \mathrm{H}_{30} \rightarrow \mathrm{C}_{7} \mathrm{H}_{16}+\mathrm{C}_{7} \mathrm{H}_{14}$ or
$\mathrm{C}_{14} \mathrm{H}_{30} \rightarrow \mathrm{C}_{7} \mathrm{H}_{16}+\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{5} \mathrm{H}_{10}$ or
$\mathrm{C}_{14} \mathrm{H}_{30} \rightarrow \mathrm{C}_{7} \mathrm{H}_{16}+\mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{C}_{4} \mathrm{H}_{8}$ or
$\mathrm{C}_{14} \mathrm{H}_{30} \rightarrow \mathrm{C}_{7} \mathrm{H}_{16}+2 \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{3} \mathrm{H}_{6}$
do not allow any equation with H_{2}
(b) ethanol has hydrogen bonding, ethanethiol does not
(c) (i) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{SH}+{ }^{9} \mathbf{2}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+\mathrm{SO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$ or
$2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{SH}+9 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+2 \mathrm{SO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
correct products
correct equation which is balanced
(ii) for CO_{2}
enhanced greenhouse effect
global warming
for SO_{2}
formation of acid rain
damage to stonework of buildings/
dissolving of aluminium ions into rivers/
damage to watercourses or forests/
aquatic life destroyed/
corrosion of metals
(d) help detect leaks of gas
(e) temperature of $450^{\circ} \mathrm{C}$
pressure of $1-2 \mathrm{~atm}$
$\mathrm{V}_{2} \mathrm{O}_{5} /$ vanadium (V) oxide/vanadium pentoxide catalyst

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2011	9701	21

3

(a) $\begin{array}{ccl}\mathbf{U} & \mathrm{CaCl}_{2} \\ & \mathbf{V} & \mathrm{CaO} \\ & \mathbf{w} & \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \\ & \mathbf{X} & \mathrm{Ca}(\mathrm{OH})_{2} \\ & \mathbf{Y} & \mathrm{CaCO} 3\end{array}$
(1)
(1)
(b) heat strongly in a test-tube or a boiling tube do not allow 'heat gently' or 'reflux'
(c) (i) Ca to U
$\mathrm{Ca}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2}$
\mathbf{V} to \mathbf{W}
$\mathrm{CaO}+2 \mathrm{HNO}_{3} \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O}$
\mathbf{U} to \mathbf{Y}
$\mathrm{CaCl}_{2}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CaCO}_{3}+2 \mathrm{NaCl}$
(ii) $2 \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow 2 \mathrm{CaO}+4 \mathrm{NO}_{2}+\mathrm{O}_{2}$
(d) $\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq}) / \mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ or formula of any soluble sulfate

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2011	9701	21

(e) (i) Ca to X
colourless gas formed/fizzing/effervescence/bubbles or
Ca dissolves or
white precipitate/suspension formed
(ii) strongly exothermic/vigorous reaction or
steam formed/steamy fumes or
surface crumbles
do not allow white ppt.

4 (a) (i) nucleophilic addition
both words are necessary
(ii) NaCN and $\mathrm{H}_{2} \mathrm{SO}_{4}$ or

HCN plus CN^{-}
do not allow HCN on its own
(iii) correct $\delta+$ and δ-, i.e.

(1) [3]
(b) (i) correct organic product

$\mathrm{C}=\mathrm{N}$ bond must be clearly shown
$\mathrm{H}_{2} \mathrm{O}$ formed/ equation balanced
(ii)

[Total: 6]

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2011	9701	21

5 (a) $\mathrm{CaC}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{C}_{2} \mathrm{H}_{2}$
(b) (i) step 1 electrophilic
addition
step 2 elimination or dehydrohalogenation
(ii) reagent $\mathrm{NaOH} / \mathrm{KOH} / \mathrm{OH}^{-}$
conditions in alcohol/ethanol
only allow conditions mark if reagent is correct
(c) (i) \mathbf{Q} is $\mathrm{CH}_{3} \mathrm{CHO}$ (as minimum)
\mathbf{R} is $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ (as minimum)
(ii) step 3 is addition
step 4 is oxidation/redox
(d) (i) combustion
$\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+5 / \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ or equation must be for the combustion of one mole of $\mathrm{C}_{2} \mathrm{H}_{2}$ $\mathrm{H}_{2} \mathrm{O}$ must be shown as liquid
correct state symbols in this equation
formation
$2 \mathrm{C}(\mathrm{s})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})$
no mark for state symbols here
(ii) let \mathbf{Z} be $\Delta H_{\mathrm{f}}{ }_{\mathrm{f}}$ of $\mathrm{C}_{2} \mathrm{H}_{2}$

$$
\begin{align*}
& \quad \mathrm{C}_{2} \mathrm{H}_{2}+5 / 2 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \\
& \Delta H_{\mathrm{f}}^{\rho} \quad \mathrm{Z} \quad 0 \quad 2(-394)-286 \\
& \Delta H_{\mathrm{c}}=-1300=2(-394)+(-286)-\mathbf{Z} \tag{1}\\
& \text { whence } \mathbf{Z}=2(-394)+(-286)-(-1300) \\
& =+226 \mathrm{~kJ} \mathrm{~mol} \\
& \tag{1}\\
& \text { value } \tag{1}\\
& \text { sign } \\
& \text { allow ecf on wrong equation }
\end{align*}
$$

